CAMBUSTION

Size Classification Without Charging – Characterization Of The New Aerodynamic Aerosol Classifier

Jonathan Symonds¹

Managing Director (Products), Cambustion: jps@cambustion.com

Tyler Johnson², Martin Irwin¹, Adam Boies², Jason Olfert³

¹ Cambustion, Cambridge, UK

² Department of Engineering, University of Cambridge, Cambridge, UK

³ Department of Mechanical Engineering, University of Alberta, Edmonton, Canada

An introduction to the AAC (at AAC!)

The Aerodynamic Aerosol Classifier solves **two** problems in Aerosol Science:

- 1. How do I select a monodisperse size classified aerosol without multiple / zero charging artefacts?
- 2. How do I select a monodisperse aerosol based upon Aerodynamic Diameter?

True monodisperse aerosol using AAC

True monodisperse aerosol using AAC

The AAC produces a truly monodisperse aerosol

Classification by Aerodynamic Diameter

Rather than just determining the sizes of particles in an aerosol stream, it is often desirable to be able to classify them for further online analysis.

AAC Principle

Go to https://www.cambustion.com/products/aac/animation to see animation

Efficiency compared to Neutraliser + DMA

dp	Number of charges										
[nm]	q=-5	q=-4	q=-3	q=-2	q=-1	q=0	q=1	q=2	q=3	q=4	q=5
2	0	0	0	0	0.0083	0.9742	0.0075	0	0	0	0
5	0	0	0	0	0.0225	0.9693	0.0189	0	0	0	0
10	0	0	0	0	0.0514	0.9124	0.0411	0	0	0	0
20	0	0	0	0	0.1096	0.7931	0.0846	0	0	0	0
50	0	0	0	0.0114	0.2229	0.5814	0.1696	0.0066	0	0	0
100	0	0.0001	0.0037	0.0561	0.2793	0.4259	0.2138	0.0317	0.0017	0	0
200	0.0005	0.0053	0.0340	0.1211	0.2641	0.2991	0.2043	0.0719	0.0153	0.0018	0.0001
500	0.0207	0.0504	0.0980	0.1490	0.1816	0.1818	0.1403	0.0891	0.0440	0.0173	0.0054
1000	0.0584	0.0854	0.1113	0.1261	0.1385	0.1235	0.1039	0.0754	0.0500	0.0293	0.0154

Total Transmission Efficiency

Selection of Sheath Flow and Speed

Relaxation time, τ , of an aerosol particle is analogous to a characteristic acceleration time for a car, e.g. its "0-60" mph time (*Hinds*, 1999; pp 111-116)

- i.e. the time taken to adjust to a new condition of forces

$$au\equiv mB = \frac{C_c(d_{ae})
ho_0d_{ae}^2}{18\mu} = \frac{2Q_{sh}}{\pi\omega^2(r_i+r_o)^2L}$$

for (balanced) AAC sheath flow $Q_{\rm sh}$, rotational speed ω , classifier inner and outer radii $r_{\rm i}$ and $r_{\rm o}$ and length L, gas viscosity μ and unit density ρ_0

Resolution parameter (R), as for a DMA, is $Q_{sh}/Q_{aerosol}$

Required resolution sets Q_{sh} , then solve for ω for a given d_{ae}

F. Tavakoli & J. S. Olfert (2013).

AAC "History"

 First prototype, Alberta / Cambustion (2010–14)

 Second prototypes, Cambustion / Alberta (2015–16)

 Production instruments, Cambustion (2017–)

25 nm − 5 µm+ size range →7000 rpm, 15 lpm sheath Step scanning function Connects to a wide range of CPCs

Aerodynamic Aerosol Classifier

12:15

Monodisperse output

AAC d_{ae} setpoint converted to mobility diameter d_{m} , SMPS charge correction **on** (AIM)

Monodisperse output summary

4 µm DOS particles, PALAS Welas spectrum of AAC output

Step Scanning Inversion

By applying methods used by Stolzenburg and McMurry (2008) on the DMA, it can be shown* that

Size spectral density at point
$$i$$

$$\frac{\mathrm{d}N}{\mathrm{dlog}d_{ae}}\Big|_{i} \approx \frac{\ln(10) \cdot N_{i}}{\eta_{i} \cdot \frac{\mathrm{dlog}d_{ae}}{\mathrm{dlog}\tau}\Big|_{i} \cdot \beta_{i}^{*}}$$

where
$$\beta^* = \left(1 + \frac{1}{\beta}\right) \cdot \ln(1 + \beta) - \left(1 - \frac{1}{\beta}\right) \cdot \ln(1 - \beta) \qquad \& \qquad \beta = \frac{1}{R_\tau} = \frac{Q_{\text{aerosol}}}{Q_{\text{sheath}}}$$

And by differentiating
$$au\equiv rac{C_c(d_{ae})
ho_0d_{ae}^2}{18\mu}$$
 $=$ $rac{ ext{dlog}(d_{ae})}{ ext{dlog}(au)}=$

$$C_c(d_{ae}) \cdot d_{ae} \cdot \left[2 \cdot d_{ae} + 2.34 \cdot \lambda + 1.05 \cdot \lambda \cdot \exp\left(-0.39 \cdot \frac{d_{ae}}{\lambda}\right) \cdot \left(1 - \frac{0.39 \cdot d_{ae}}{\lambda}\right) \right]^{-1}$$

 ω is varied over a scan, downstream CPC logged and inverted to give

$$\frac{\mathrm{d}N}{\mathrm{dlog}d_{ae}} \mathrm{vs} \ d_{ae} \longrightarrow$$

*T.J. Johnson et al., in preparation

Size Accuracy

Aerosol sources:

Duke Scientific & JSR Polystyrene Latex Spheres

Aerosolised with:

- TSI electrospray (<100 nm)
- BGI Collison nebulizer (>100 nm)

Classification Performance – Tandem AACs

Transmission Efficiency (λ_{Ω})

Scales area under transfer function Ideal behaviour ⇒ 1.0 <1.0 ⇒ losses, >1.0 ⇒ gains

Transfer Function Width Factor (μ_{Ω})

Scales FWHM
Ideal behaviour ⇒ 1.0
<1.0 ⇒ broader, >1.0 ⇒ narrower

 λ_{Ω} and μ_{Ω} determined by scanning the monodisperse output of one AAC with another AAC, then performing a deconvolution

$$\frac{N_2(\tau_2^*)}{N_1} = \frac{\int \eta_i(d_{\mathbf{a},2}) \cdot \Omega_{\mathrm{NI},1}(\tau_1,\tau_1^*,\beta_1,\lambda_{\Omega,1},\mu_{\Omega,1}) \cdot \Omega_{\mathrm{NI},2}(\tau_2,\tau_2^* \cdot \tau_{\mathrm{agree}}^*,\beta_2,\lambda_{\Omega,2},\mu_{\Omega,2}) \cdot \mathrm{d}N_i}{\int \eta_i(d_{\mathbf{a},1}) \cdot \Omega_{\mathrm{NI},1}(\tau_1,\tau_1^*,\beta_1,\lambda_{\Omega,1},\mu_{\Omega,1}) \cdot \mathrm{d}N_i}$$

Transmission Efficiency & Broadening Results

Resolution (R) = 10: LF ("low" flow): ${}^{Q_a}/{}_{Q_{sh}} = {}^{0.3}/{}_3$ LPM, HF (high flow): ${}^{Q_a}/{}_{Q_{sh}} = {}^{1.5}/{}_{15}$ LPM

 $\circ\,$ A-B LF $\,^{\Box}\,$ A-B HF $\,\diamond\,$ B-A LF $\,^{\bigtriangledown}\,$ B-A HF

Maximum theoretical λ for AAC, away from diffusion regime, = 0.9

- 1. AAC reaches 0.8/0.9 = 89% of max transmission away from diffusion loss regime small particle losses consistent with diffusional loss
- 2. AAC "losses" much lower than neutraliser + DMA system across all sizes
- 3. AAC transfer function approx twice as broad as expected this probably due to imperfect flow distribution, especially as rotating

 T.J. Johnson *et al.*, in preparation

Step-scan comparison with SMPS

- DOS nebulized by constant output atomizer
- Both SMPS multiple-charge correction, and empirical AAC losses/broadening correction based on tandem experiments were used. AAC data converted to mobility metric.
- High degree of agreement between corrected AAC and SMPS/CPC measurements (CMD, GSD and N_{total} agreement of -0.8%, 1.2% and 1.4% respectively)

Step-scan comparison with ELPI

DOS nebulized by constant output atomizer

Conclusions

- AAC provides a means to select a monodisperse aerosol without charging it – removing multiple charging effects, and mitigating particle loss due to charging efficiency.
- AAC provides a means to select a monodisperse aerosol by aerodynamic diameter
- Production instrument has a size range 25 nm 5 µm+
- Production instrument accuracy and transmission efficiency excellent
- Production instrument broadening more than expected
 but still comparable resolution to a DMA
- Can currently be stepped scan to yield a size spectrum

References

- Karlsson, M. N. A. & Martinsson, B. G. (2003) Methods to measure and predict the transfer function size dependence of individual DMAs, Journal of Aerosol Science, 34, 603–625
- Stolzenburg, M. R. & McMurry, P. H. (2008) Equations Governing Single and Tandem DMA Configurations and a New Lognormal Approximation to the Transfer Function, Aerosol Science and Technology, 42, 421–432
- Tavakoli, F. & Olfert, J. S. (2013) An Instrument for the Classification of Aerosols by Particle Relaxation Time: Theoretical Models of the Aerodynamic Aerosol Classifier, Aerosol Science and Technology, 47, 916–926
- Tavakoli, F., Symonds, J.P.R., Olfert, J.S. (2014) Generation of a monodisperse sizeclassified aerosol independent of particle charge, Aerosol Science and Technology, 48(2) i-iv
- <u>Wiedensohler, A. (1988) An approximation of the bipolar charge distribution for particles in the submicron size range, Journal of Aerosol Science, 19, 387–389</u>

Any questions?

Dr Jonathan Symonds

jps@cambustion.com

https://www.linkedin.com/in/jonsymonds/

Booth #13 at AAC

www.cambustion.com/aac

